行业资讯
生物特征识别技术及其发展趋势
来源:互联网 发布时间:2008/10/17
目前,常用的生物特征识别技术所用的生物特征有基于生理特征的如人脸、指纹、虹膜,也有基于行为特征的如笔迹、声音等。下面就这些常见的生物特征识别技术的特点及其发展趋势作一简单介绍。
人脸识别
人脸识别作为一种基于生理特征的身份认证技术,与目前广泛应用的以密码、IC卡为媒介的传统身份认证技术相比,具有不易伪造、不易窃取、不会遗忘的特点;而人脸识别与指纹、虹膜、掌纹识别等生理特征识别技术相比,具有非侵犯性、采集方便等特点。因而人脸识别是一种非常自然、友好的生物特征识别认证技术。
人脸识别技术包括图像或视频中进行人脸检测、从检测出的人脸中定位眼睛位置、然后提取人脸特征、最后进行人脸比对等一系列相关的技术。
最早的人脸识别系统建成于20世纪60年代,该系统以人脸特征点的间距、比率等参数作为特征,构建了一个半自动的人脸识别系统。此时的人脸识别研究多集中于研究如何提取特征点进行人脸识别,如人脸特征器官(眼角、嘴角、鼻孔)的相对位置、大小、形状、面积及彼此间的几何关系等。由于这些特征点难以准确定位、鲁棒性差,因而采用这些方法的人脸识别系统的性能都很低。
自20世纪80年代开始,人脸识别技术出现了基于面部图像的方法。与基于特征点的方法相比,基于面部图像的方法不是提取人脸特征器官这一高层特征,而是将人脸作为一个图像整体,从图像中提取反映人脸特性的特征如DCT变换特征、小波特征、Gabor特征等等。基于面部图像的方法由于利用了更多的底层信息,以及统计模式识别方法的引入,使得这类方法具有非常高的识别率和非常好的鲁棒性。由于基于面部图像的人脸识别算法具有很高性能,目前已经出现了不少推广人脸识别技术的厂商,如国内的北京海鑫科金高科技股份有限公司、国外的L1ID等。
为了评测基于面部图像的人脸识别算法的性能。美国ARPA和ARL于1993年至1996年建立了FERET数据库,用于评测当时的人脸识别算法的性能。共举行了三次测试FERET94、FERET95、FERET96。FERET测试的结果指出,光照、姿态和年龄变化会严重影响人脸识别的性能。
FERET的测试结果也表明了基于面部图像的方法的缺点。人脸是一个三维非刚体,具有姿态、表情等变化,人脸图像采集过程中易受到光照、背景、采集设备的影响。这些影响会降低人脸识别的性能。
为了克服姿态变化对人脸识别性能的影响,也为了进一步提高人脸识别性能,20世纪90年代后期,一些研究者开始采用基于3D的人脸识别算法。这些算法有的本身就采用三维描述人脸,有的则用二维图像建立三维模型,并利用三维模型生成各种光照、姿态下的合成图像,利用这些合成图像进行人脸识别。
2000年后,人脸识别算法逐渐成熟,出现了商用的人脸识别系统。为了评测这些商用系统的性能,也作为FERET测试的延续,美国有关机构组织了FRVT2000、FRVT2002、FRVT2006测试。测试结果表明,人脸识别错误率在FRVT2006上下降了至少一个数量级,这种性能的提升在基于图像的人脸识别算法和基于三维的人脸识别算法上都得到体现。此外,在可控环境下,虹膜、静态人脸和三维人脸识别技术的性能是相当的。此外,FRVT2006还展现了不同光照条件下人脸识别性能的显著提高,最后,FRVT2006表明人脸自动识别的性能优于人。值得一提的是,清华大学电子工程系作为国内唯一参加FRVT2006的评测的学术机构,其人脸自动识别性能优于人类。
FRVT2006为人脸识别后续的研究指明了方向,人脸识别中光照、年龄变化依然对人脸识别性能有很大影响,二维人脸识别的性能
[!--empirenews.page--]不比三维人脸识别差。
指纹识别
指纹识别技术是指通过比较不同人指纹中的特征点不同来区分不同人的身份。指纹识别技术通常由三个部分组成:对指纹图像进行预处理;提取特征值,并形成特征值模板;指纹特征值比对。
指纹图像预处理的目的是为了减少噪声干扰的影响,以便有效提取指纹特征值。常用的预处理方法有图像增强、图像平滑、二值化、图像细化等。
特征提取的目的就是从预处理后的指纹图像中,提取出能够表达该指纹图像与众不同的特征点的过程。最初特征提取是基于图像的,从图像整体中提取出特征进行比较,但该方法的精度和性能较低。现在一般采用基于特征点的方法,从图像中提取反应指纹特性的全局特征(如纹形、模式区、核心区、三角点、纹数等)和局部特征(如终结点、分叉点、分歧点、孤立点、环点等)。得到特征点后就可以对特征点进行编码形成特征值模板。
指纹特征值比对就是把当前获得的指纹特征值与存储的指纹特征值模板进行匹配,并给出相似度的过程。
虹膜识别
虹膜相对而言是一个较新的生物特征。1983年,Flom与Safir申请了虹膜识别专利保护,使得虹膜识别方面的研究很少。1993年,Daugman发表了关于虹膜自动识别算法的开创性工作,奠定了世界上首个商业虹膜自动识别系统的基础。随着Flom和Safir专利在2005年的失效和CASIA及ICE2005中虹膜数据集的提供,虹膜识别算法的研究越来越蓬勃。ICE2006首次对虹膜识别算法性能进行了测试。
虹膜识别中需要解决如下两个难点问题:一是虹膜图像的获取,二是实现高性能的虹膜识别算法。